3.582 \(\int \frac {1}{(c+a^2 c x^2)^{3/2} \tan ^{-1}(a x)^2} \, dx\)

Optimal. Leaf size=69 \[ -\frac {\sqrt {a^2 x^2+1} \text {Si}\left (\tan ^{-1}(a x)\right )}{a c \sqrt {a^2 c x^2+c}}-\frac {1}{a c \sqrt {a^2 c x^2+c} \tan ^{-1}(a x)} \]

[Out]

-1/a/c/arctan(a*x)/(a^2*c*x^2+c)^(1/2)-Si(arctan(a*x))*(a^2*x^2+1)^(1/2)/a/c/(a^2*c*x^2+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.20, antiderivative size = 69, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {4902, 4971, 4970, 3299} \[ -\frac {\sqrt {a^2 x^2+1} \text {Si}\left (\tan ^{-1}(a x)\right )}{a c \sqrt {a^2 c x^2+c}}-\frac {1}{a c \sqrt {a^2 c x^2+c} \tan ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^2),x]

[Out]

-(1/(a*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x])) - (Sqrt[1 + a^2*x^2]*SinIntegral[ArcTan[a*x]])/(a*c*Sqrt[c + a^2*c*
x^2])

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 4902

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1)
*(a + b*ArcTan[c*x])^(p + 1))/(b*c*d*(p + 1)), x] - Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a + b
*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rule 4971

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[(d^(q +
1/2)*Sqrt[1 + c^2*x^2])/Sqrt[d + e*x^2], Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b,
 c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] &&  !(IntegerQ[q] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {1}{\left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)^2} \, dx &=-\frac {1}{a c \sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}-a \int \frac {x}{\left (c+a^2 c x^2\right )^{3/2} \tan ^{-1}(a x)} \, dx\\ &=-\frac {1}{a c \sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}-\frac {\left (a \sqrt {1+a^2 x^2}\right ) \int \frac {x}{\left (1+a^2 x^2\right )^{3/2} \tan ^{-1}(a x)} \, dx}{c \sqrt {c+a^2 c x^2}}\\ &=-\frac {1}{a c \sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}-\frac {\sqrt {1+a^2 x^2} \operatorname {Subst}\left (\int \frac {\sin (x)}{x} \, dx,x,\tan ^{-1}(a x)\right )}{a c \sqrt {c+a^2 c x^2}}\\ &=-\frac {1}{a c \sqrt {c+a^2 c x^2} \tan ^{-1}(a x)}-\frac {\sqrt {1+a^2 x^2} \text {Si}\left (\tan ^{-1}(a x)\right )}{a c \sqrt {c+a^2 c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 53, normalized size = 0.77 \[ -\frac {\sqrt {a^2 x^2+1} \tan ^{-1}(a x) \text {Si}\left (\tan ^{-1}(a x)\right )+1}{a c \sqrt {a^2 c x^2+c} \tan ^{-1}(a x)} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c + a^2*c*x^2)^(3/2)*ArcTan[a*x]^2),x]

[Out]

-((1 + Sqrt[1 + a^2*x^2]*ArcTan[a*x]*SinIntegral[ArcTan[a*x]])/(a*c*Sqrt[c + a^2*c*x^2]*ArcTan[a*x]))

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {a^{2} c x^{2} + c}}{{\left (a^{4} c^{2} x^{4} + 2 \, a^{2} c^{2} x^{2} + c^{2}\right )} \arctan \left (a x\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^2,x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)/((a^4*c^2*x^4 + 2*a^2*c^2*x^2 + c^2)*arctan(a*x)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^2,x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [C]  time = 0.64, size = 212, normalized size = 3.07 \[ \frac {i \left (\Ei \left (1, i \arctan \left (a x \right )\right ) \arctan \left (a x \right ) x^{2} a^{2}+\Ei \left (1, i \arctan \left (a x \right )\right ) \arctan \left (a x \right )+\sqrt {a^{2} x^{2}+1}\, x a +i \sqrt {a^{2} x^{2}+1}\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{2 \left (a^{2} x^{2}+1\right )^{\frac {3}{2}} \arctan \left (a x \right ) c^{2} a}-\frac {i \left (\arctan \left (a x \right ) \Ei \left (1, -i \arctan \left (a x \right )\right ) x^{2} a^{2}+\Ei \left (1, -i \arctan \left (a x \right )\right ) \arctan \left (a x \right )+\sqrt {a^{2} x^{2}+1}\, x a -i \sqrt {a^{2} x^{2}+1}\right ) \sqrt {c \left (a x -i\right ) \left (a x +i\right )}}{2 \left (a^{2} x^{2}+1\right )^{\frac {3}{2}} \arctan \left (a x \right ) c^{2} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^2,x)

[Out]

1/2*I*(Ei(1,I*arctan(a*x))*arctan(a*x)*x^2*a^2+Ei(1,I*arctan(a*x))*arctan(a*x)+(a^2*x^2+1)^(1/2)*x*a+I*(a^2*x^
2+1)^(1/2))/(a^2*x^2+1)^(3/2)*(c*(a*x-I)*(I+a*x))^(1/2)/arctan(a*x)/c^2/a-1/2*I*(arctan(a*x)*Ei(1,-I*arctan(a*
x))*x^2*a^2+Ei(1,-I*arctan(a*x))*arctan(a*x)+(a^2*x^2+1)^(1/2)*x*a-I*(a^2*x^2+1)^(1/2))/(a^2*x^2+1)^(3/2)*(c*(
a*x-I)*(I+a*x))^(1/2)/arctan(a*x)/c^2/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (a^{2} c x^{2} + c\right )}^{\frac {3}{2}} \arctan \left (a x\right )^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^(3/2)/arctan(a*x)^2,x, algorithm="maxima")

[Out]

integrate(1/((a^2*c*x^2 + c)^(3/2)*arctan(a*x)^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\mathrm {atan}\left (a\,x\right )}^2\,{\left (c\,a^2\,x^2+c\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(atan(a*x)^2*(c + a^2*c*x^2)^(3/2)),x)

[Out]

int(1/(atan(a*x)^2*(c + a^2*c*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (c \left (a^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \operatorname {atan}^{2}{\left (a x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**2*c*x**2+c)**(3/2)/atan(a*x)**2,x)

[Out]

Integral(1/((c*(a**2*x**2 + 1))**(3/2)*atan(a*x)**2), x)

________________________________________________________________________________________